2014-09-05
Problem Description
One day I was shopping in the supermarket. There was a cashier counting coins seriously when a little kid running and singing "门前大桥下游过一群鸭,快来快来 数一数,二四六七八". And then the cashier put the counted coins back morosely and count again...
Hello Kiki is such a lovely girl that she loves doing counting in a different way. For example, when she is counting X coins, she count them N times. Each time she divide the coins into several same sized groups and write down the group size Mi and the number of the remaining coins Ai on her note.
One day Kiki's father found her note and he wanted to know how much coins Kiki was counting.
Input
The first line is T indicating the number of test cases.
Each case contains N on the first line, Mi(1 <= i <= N) on the second line, and corresponding Ai(1 <= i <= N) on the third line.
All numbers in the input and output are integers.
1 <= T <= 100, 1 <= N <= 6, 1 <= Mi <= 50, 0 <= Ai < Mi
Output
For each case output the least positive integer X which Kiki was counting in the sample output format. If there is no solution then output -1.
Sample Input
2
2
14 57
5 56
5
19 54 40 24 80
11 2 36 20 76
Sample Output
Case 1: 341
Case 2: 5996
题意:给你多种不同的数钱的方法,求满足要求的最少的钱数。
思路:猛然间一看好像是关于中国剩余定理的题,但是这一题的模数不一定是两两互质。因此可以用解模线性方程组的方法来做,这就要求必须了解扩展欧几里得算法,下面说一下解模线性方程组的方法,思想:不断的进行两两合并,即可求得。我们先可以先找两个同余方程 设通解为N,N=r1(mod(m1)),N=r2(mod(m2)),显然可以化为k1*m1+r1=k2*m2+r2;--->k1*m1+(-k2*m2)=r2-r1;设a=m1,b=m2,x=k1,y=(-k2),c=r2-r1方程可写为ax+by=c;由扩展欧几里得解得x即可,那么将x化为原方程的最小正整数解,(x*(c/d)%(b/d)+(b/d))%(b/d);那么这个x就是原方程的最小整数解。所以N=a*(x+n*(b/d))+r1====N=(a*b/d)*n+(a*x+r1),这里只有n为未知数所以又是一个N=(a*x+r1)(mod(a*b/d))的式子,然后只要不断的将两个式变成一个式子,最后就能解出这个方程组的解
AC代码:
[cpp]
#include<iostream>
#include<string.h>
#include<string>
#include<cstdio>
#define N 7
using namespace std;
int M[N],A[N];
int Gcd(int a,int b)
{return b==0?a:Gcd(b,a%b);}
void gcd(int a,int b,int &d,int &x,int &y)
{
if(!b) x=1,y=0,d=a;
else gcd(b,a%b,d,y,x),y-=a/b*x;
}
int main()
{
int T;
scanf("%d",&T);
for(int k=1;k<=T;++k)
{
int n;
scanf("%d",&n);
for(int i=0;i!=n;++i) scanf("%d",&M[i]);
for(int i=0;i!=n;++i) scanf("%d",&A[i]);
int x,y,d;
int a=M[0],c1=A[0];
bool flag=false;
for(int i=1;i<n;++i)
{
int b=M[i];
int c=A[i]-c1;
gcd(a,b,d,x,y);
if(c%d){flag=true;break;}
int r=b/d;
x=(c/d*x%r+r)%r;
c1=a*x+c1;
a=a*r;
}
if(flag) printf("Case %d: -1/n",k);
else
{
int ans=1;
if(c1==0)//特殊情况当所有余数都为0时
{
for(int i=0;i!=n;++i)
ans=M[i]/Gcd(ans,M[i])*ans;
printf("Case %d: %d/n",k,ans);
}
else printf("Case %d: %d/n",k,c1);
}
}return 0;
}
1
CI框架连接数据库配置操作以及多数据库操作
09-05
2
asp 简单读取数据表并列出来 ASP如何快速从数据库读取大量数据
05-17
3
C语言关键字及其解释介绍 C语言32个关键字详解
04-05
4
C语言中sizeof是什么意思 c语言里sizeof怎样用法详解
04-26
5
PHP中的魔术方法 :__construct, __destruct , __call, __callStatic,__get, __set, __isset, __unset , __sleep,
09-05
6
将视频设置为Android手机开机动画的教程
12-11
7
PHP中的(++i)前缀自增 和 (i++)后缀自增
09-05
8
最简单的asp登陆界面代码 asp登陆界面源代码详细介绍
04-12
常用dos命令及语法
2014-09-27
PHP中include和require区别之我见
2014-09-05
如何安装PHPstorm并配置方法教程 phpstorm安装后要进行哪些配置
2017-05-03
php递归返回值的问题
2014-09-05
单片机编程好学吗?单片机初学者怎样看懂代码
2022-03-21
PHP 教程之如何使用BLOB存取图片信息实例
2014-09-05
学ug编程如何快速入门?
2022-03-17
PHP数组函数array
2014-09-05
学习使用C语言/C++编程的7个步骤!超赞~
2022-03-20
零基础的初学者怎样学习java,或者应该先学什么?
2022-03-21
收割者剑客传奇免谷歌汉化版下载v2.0.1 安卓版
其它手游 40.19MB
下载
reaper收割者破解版下载v2.0.1 安卓完美版
其它手游 40.19MB
下载
reaper汉化版下载v2.0.1 安卓中文版
其它手游 40.19MB
下载
死神苍白剑士的传说中文版(Reaper)下载v2.0.1 安卓版
其它手游 40.19MB
下载
宝宝巴士迷宫小镇下载v9.89.99.01 官方安卓版
其它手游 113.4MB
下载
宝宝迷宫大作战游戏下载v9.89.99.01 安卓版
其它手游 113.4MB
下载
宝宝巴士干净的妙妙游戏下载v9.89.99.00 安卓版
其它手游 76.43MB
下载
妙妙爱干净宝宝巴士下载v9.89.99.00 安卓版
其它手游 76.43MB
下载翻炒厨师游戏下载v2.1.3 安卓版
下载
维塔战士游戏最新版下载v976 安卓版
下载
泡泡小镇城堡游戏下载v1.1.5 安卓完整版
下载
3d蚊子模拟器游戏最新版下载v2023.08.22 安卓版
下载
超级机器人英雄游戏下载v1.1.3 安卓版
下载
robot super游戏下载v1.1.3 安卓版
下载
zombie tsunami游戏下载v4.6.8 安卓版
下载
2026僵尸尖叫正版下载v4.6.8 安卓官方版
下载